
Sintel
Release 0.1

Apr 13, 2020

Software

1 Installation 3
1.1 Dependency Icarus Verilog . 3
1.2 Binary . 3
1.3 For developers . 3
1.4 Execution . 4

2 Visual Interface 5
2.1 Home view . 5
2.2 Simulation view . 6
2.3 Settings view . 7
2.4 Add component view . 7
2.5 Add state machine view . 8

3 Export the model to HDL 9
3.1 (Optional) Install free simulation tools (Linux) . 9
3.2 (Optional) simulate the vhdl model in gtkwave with ghdl . 10
3.3 (Optional) simulate the verilog model in gtkwave with iverilog . 10

4 State machine (sm) 11
4.1 basic data . 12
4.2 Add I/O . 12
4.3 Workspace . 12
4.4 Edit state machine . 13

5 Add and edit components 15
5.1 Joining components . 15
5.2 Adding components from scratch . 15

6 About the project 21

i

ii

Sintel, Release 0.1

Copyright (c) 2019 Wilfer Daniel Ciro Maya <wilcirom@gmail.com>, Director Luis Miguel Capacho <lmcapa-
cho@uniquindio.edu.co>. Degree work for Universidad del Quindío, Colombia.

Sintel is a simulator and modeler of basic digital systems that allows, in addition to visualizing inputs and outputs in
real time, to export the model to a hardware description language such as VHDL and verilog.

Sintel is written in python with the QT graphics library, it’s an open source project with GPLv3 license or later.

In this manual we hope to give you a guide to the use and operation of the different parts of the software, as well as to
invite you to contribute with various elements within it such as the creation of components.

You can find the master code in this link <https://gitlab.com/WilferCiro/sintel>

Software 1

mailto:wilcirom@gmail.com
mailto:lmcapacho@uniquindio.edu.co
mailto:lmcapacho@uniquindio.edu.co
https://gitlab.com/WilferCiro/sintel

Sintel, Release 0.1

2 Software

CHAPTER 1

Installation

1.1 Dependency Icarus Verilog

For windows, download the .exe file in https://iverilog.fandom.com/wiki/Main_Page and follow steps and install,
restart your computer and follow the nexts steps

For Ubuntu:

sudo apt install iverilog

For Arch:

sudo pacman -S iverilog

1.2 Binary

For install in Windows, download the https://gitlab.com/WilferCiro/sintel/-/raw/master/instals/Sintel.exe and open the
Sintel.exe file and continue with the steps

For install in Linux

$ wget https://gitlab.com/WilferCiro/sintel/-/raw/master/instals/LinuxInstaller.tar.gz
$ tar xf LinuxInstaller.tar.gz
$ cd LinuxInstaller
$ sh install.sh

1.3 For developers

for install in Ubuntu

3

https://iverilog.fandom.com/wiki/Main_Page
https://gitlab.com/WilferCiro/sintel/-/raw/master/instals/Sintel.exe

Sintel, Release 0.1

sudo apt install python3-pip qttools5-dev-tools pyqt5-dev-tools iverilog python3-
→˓matplotlib

for install in arch

sudo pacman -S python3-pip pyqt5 iverilog python3-matplotlib

Next, exec on all platforms

sudo pip3 install shutil sqlite3

1.4 Execution

For exec Sintel, cd into Sintel’s folder and put in your terminal.

git clone https://gitlab.com/WilferCiro/sintel.git
cd sintel/
python3 application.py

4 Chapter 1. Installation

CHAPTER 2

Visual Interface

It has several interfaces throughout the software, among them are

• Home view

• Simulation view

• Settings view

• Add component view

• Add state machine view

2.1 Home view

When you start Sintel, the first view is the home view, this section is very basic, where you can create and open
projects, there is a list of 3 recent opened projects ordered by accessed date.

5

Sintel, Release 0.1

2.1.1 Open and load project

The projects extension is .sintel, you can open projects with this extension.

2.2 Simulation view

The simulation view is the main view in the software, since it’s the place where you can join components for simulate
your digital system.

This section is displayed when you create or open a project. This view is divided in several parts like

• Left side: there is the components list, you can drag and drop them into the workspace

• Center side: there is the workspace, there you can join the components and model the digital system.

• Bottom side: there are several buttons, these buttons serve to run the simulation, and configure aspects of this.

• Top right side: there are buttons for save and open projects, and another button for open the simulation view
menu.

• Simulation view menu: this menu has several options that will be described below.

6 Chapter 2. Visual Interface

Sintel, Release 0.1

2.3 Settings view

This section is designed for select characteristics important for the experience in the software.

2.4 Add component view

This section is designed for give the possibilities of add new components from zero, adding i/o, code and icons.

2.3. Settings view 7

Sintel, Release 0.1

2.5 Add state machine view

In this view, you can add and edit a state machine graphically, for more information go to “Add state machine” section

8 Chapter 2. Visual Interface

CHAPTER 3

Export the model to HDL

You can export your simulation model to

• VHDL

• Verilog

For export the model you have to press the “Export to HDL” button ubicated in the simulation view menu, this action
creates two folders in the project path with the vhdl and verilog files.

The files in the folders are:

• vhdl and verilog component files.

• verilog/main.v and vhdl/main.vhdl, this file contains the connections of all components made visually, and is
the top level entity.

• verilog/testbench.v and vhdl/testbench.vhdl, this file contains a simple workbench for simulate the model, you
can edit this file to create more complex simulations.

• verilog/Makefile and vhdl/Makefile, this file contains the commands to run the testbench in gtkwave.

3.1 (Optional) Install free simulation tools (Linux)

3.1.1 GTKWave

For simulate the generated HDL model, you can use IDEs like Quartus with the modelsim, and we recommend the
GTKWave (http://gtkwave.sourceforge.net/) application, this applicatión is free and can be installed in Windows, Mac
OSX and Linux.

For install in linux, it depends of your distribution, for example, for ubuntu you can install it with:

sudo apt install gtkwave

for arch

9

http://gtkwave.sourceforge.net/

Sintel, Release 0.1

sudo pacman -S gtkwave

3.1.2 GHDL

ghdl is a open source simulator for VHDL language (more info in http://ghdl.free.fr/), for install it you can execute

In Ubuntu

sudo apt install ghdl

In arch

yaourt -S ghdl-llvm-git

3.1.3 iverilog

icarus verilog is a open source verilog compiler (mode info in https://iverilog.fandom.com/wiki/Main_Page), for install
it you can execute

In Ubuntu

sudo apt install iverilog

In arch

sudo pacman -S iverilog

3.2 (Optional) simulate the vhdl model in gtkwave with ghdl

For simulate the generated code, there is a Makefile in the vhdl directory of your project, this file contains the compiler
and run commands

ghdl -a *.vhdl
ghdl -e testbench
ghdl -r testbench --vcd=testbench.vcd
gtkwave testbench.vcd

When these commands are finished, you will have gtkwave open with a default simulation created in the test-
bench.vhdl, you can edit this file and improve the simulation at your convenience.

3.3 (Optional) simulate the verilog model in gtkwave with iverilog

For simulate the generated code, there is a Makefile in the verilog directory of your project, this file contains the
compiler and run commands

iverilog -o simulation *.v
vvp simulation
gtkwave test.vcd &

When these commands are finished, you will have gtkwave open with a default simulation created in the testbench.v,
you can edit this file and improve the simulation at your convenience.

10 Chapter 3. Export the model to HDL

http://ghdl.free.fr/
https://iverilog.fandom.com/wiki/Main_Page

CHAPTER 4

State machine (sm)

For create a state machine, press the “Add state machine” button in the simulation view menu, there a new tab will be
created with the creation interface, this interface is divided in

• Left side: basic data and sm type

• Center: workspace for add and link states

• Right side: for add inputs and outputs

11

Sintel, Release 0.1

4.1 basic data

This is the information data of the state machine, the edition date is automatically updated.

Warning: Be careful with the name of the state machine, since it defines the files to be saved, if there is already a
state machine with the name you enter, it will be replaced by the new machine.

4.2 Add I/O

For add an input or output, press the “Add” button located in the respective input or output section, two fields are
automatically added to the table, these are

• ID: is the entry or exit identifier, must be unique

• Size: You can define a connector bus size

For delete a field, you must leave the ID field blank and press enter key.

4.3 Workspace

In this section, you can add states and join them for create a visual state machine. When you add a new state machine,
there are two default states, the green state “SS” is the start state, and the blue state “FS” is the final state.

4.3.1 Add state

For add an state, you must press double click in a blank space of the workspace, there a circle identified with the state
ID is created, which automatically increases

4.3.2 Delete state

For delete an state, you must select the state and press the Supr key.

4.3.3 Edit output in state

For add outputs to an state, the state machine must be moore type. Double click to state and a modal window will be
displayed, there is a table, then you define the output value for all the outputs, this value is limited by

2𝑆𝑖𝑧𝑒 − 1

where Size is the bus size defined in the output addition

4.3.4 Join states

For join states, you must click on the source state and then click on the destination state, you will see that a line is
created that joins them with an arrow identifying the origin and destination

12 Chapter 4. State machine (sm)

Sintel, Release 0.1

4.3.5 Delete join

For delete a join, click in line and press supr key.

4.3.6 Edit conditions

The conditions are edited in the lines that connect the states, for this, double click in these lines, next a modal window
is shown with two tabs

• Conditions tab: you can add the list of conditions, add a line with the button and modify them, if you have more
open parentheses than closed ones, the program will automatically close them at the end

• Outputs tab: This section is enabled if the state machine is mealy type and its operation is the same as adding
the outputs in the states.

4.4 Edit state machine

To edit a state machine, you must add a component of this state machine type to the simulation workspace, double
click on the component and press the edit button located in the upper right part of the properties window.

When you add, edit or delete an input/output of a state machine, we recommend that you close Sintel and open for
take the state machine changes.

4.4. Edit state machine 13

Sintel, Release 0.1

14 Chapter 4. State machine (sm)

CHAPTER 5

Add and edit components

There are two ways to add a new component

• Joining components for create “macro components”.

• Adding all from scratch, IO definitions, python code, vhd code, verilog code, svg icon.

5.1 Joining components

You can create components joining another components, we call this union as “maco component”, you can create
macro components joining components with components and macro components.

For add a macro component, you must select the components that are part of the macro component and press in the
bottom site the button “Add macro component”, and this will create a white box that contains the components inside,
you can expand or contract this box clicking the “+” icon or the “-” icon.

This box initially not have inputs and outputs, you can add them double click the white box, and a modal window will
appear, there are two tables, you can add the inputs and outputs separated, define the ID, bus size and if is input, a
default value (if this no has default value, put “-1” in the field), for delete a I/O, leave blank the ID field.

You can save this macro component, going to second tab of the macro component properties, put a name and press the
save button, now this schematic circuit will save in your directory.

If you select a macro component and press “supr” key, the macro is removed but the internal components are conserved,
for delete all complete, just right click and press delete all.

The macro components schematic is saved in JSON format in the SintelDir/components_macros, yo can share this file
to another people.

5.2 Adding components from scratch

This action is realized in the “add components view”, for show this section you must press the “Add component”
button in the menu of simulation view.

15

Sintel, Release 0.1

This view has 3 main sections

• Left panel: there is a form with the basic data of the component.

• Right panel: there is a view of the configuration component file, and a resume of the entered data in JSON
format.

• Center: there are tabs for add the component data

5.2.1 Left Panel:

Warning: Take care, if there is a component with the name that you putted, the old component will be replaced.

Danger: Don’t use a reserved python, vhdl or verilog word for name the component.

Warning: There are two fields that are for define if the component is an input or output of all the system, for
example a clock generator, don’t select them if your component isn’t a general IO of the system, since if you select
it, the component can consume more computing resources and will not work in the best way.

5.2.2 Tabs of data

I/O Definition

• Variables are created for change define the bus size, you can assign them to Inputs and outputs, and when the
user change the size of a connector, all connectors that are associated to this variable will change, this is useful
when you have outputs that depends of inputs for example a OR gate, the output or 8 bits is realized by 2 inputs
of 8 bits.

• Inputs, define the input ID, the variable for change the connector size in the simulation, and if this is a normal
input, a clock input (If you will connect a clock to this connector, for example the register clock input), or a reset
input (If you will connect a reset signal, for example the reset input of a state machine).

• Outputs, define the output ID, the variable for change the connector size in the simulation, and if this is a clock
generator, select “Yes” in “is clock generator” field.

Properties

You can add two types of properties, checking the “Show Inline?” value

• Inline: are visible in the workspace under the component, use them only for characteristics that can be changed
in execution time, it should be noted that the processor usage increments when a property is changed in execution
time, this can be used for change system inputs in real time. Those properties won’t be exported to HDL.

• Hide: these properties are shown when you double click on a component in workspace, those properties will be
exported to HDL.

Regardless of the type of property, you can select different types of user interaction, for example a number input, or a
list. These types of input have their own fields for fill.

• Select list: add the list of values separated by colon, if you select the “Is Binary?” option, the values that you
can add are “1” and “0”.

16 Chapter 5. Add and edit components

Sintel, Release 0.1

• Number: you can add a default value, the min value and the max value, if you prefer, you can limit the maximum
value to a variable size, then, when the user changes the bus size, this maximum value will change.

• Bit: Only allows select “1” or “0”.

For delete a property, press the “Delete button”.

Icons

There is a workspace where you can drag and drop the Inputs or Outputs added previous, select the SVG icon clocking
the button, and you cand adjust the size with the “range inputs”.

Note: When you create the svg file, try to take the measurements respect “25px”, for example: Width (50px) height
(75px).

Python code

The basic structure for the python file of a component is

#!/usr/bin/env python
from common import Component

class component(Component):
def setup(self, properties):

{{IO Declarations}}
self.userSetup(properties)

def userSetup(self, properties):
{{your setup code}}

def update(self):
{{ your update code }}

• “IO Declarations”, these lines are added automatically, and defines the inputs and outputs of the component.

• “your update code”, you must add the update code, this code is executed when a Signal writes a value in this
connector

• “setup user code” is executed in the constructor, in this method you can assign the properties, these properties
are sent on a dictionary like (this example applies if you add two properties called “reset” and “myProperty”)

properties = {"reset_pos" : "0", "myProperty" : "100"}
self._resetPos = int(properties["reset_pos"])

Next you will see two examples, one of an OR, and another of a register

1 #!/usr/bin/env python
2 # OR example by sintel
3 from common import Component
4

5 class OR1(Component):
6 def setup(self, properties):
7 self._addInput("pIn1")
8 self._addInput("pIn2")
9 self._addOutput("pOut")

(continues on next page)

5.2. Adding components from scratch 17

Sintel, Release 0.1

(continued from previous page)

10 self.userSetup(properties)
11

12 def userSetup(self, properties):
13 pass
14

15 def update(self):
16 # Read the input values
17 value1 = self.read("pIn1", base = 2)
18 value2 = self.read("pIn2", base = 2)
19

20 # Checks if the size are equal
21 if len(value1) == len(value2):
22

23 # Realize the OR operation
24 write = ['1' if value1[i] == '1' or value2[i] == '1' else '0'

→˓for i in range(len(value1))]
25

26 # Write the result
27 self.write("pOut", write, base = 2)
28 else:
29 # Writes an unknown value
30 self.write("pOut", 'U')

1 #!/usr/bin/env python
2 # Register example by sintel
3 from common import Component
4

5 class Register2(Component):
6 def setup(self, properties):
7 self._addInput("inD")
8 self._addInput("ena")
9 self._addInput("rst")

10 self._addInput("clk")
11 self._addOutput("outQ")
12 self.userSetup(properties)
13

14 def userSetup(self, properties):
15 self._resetPos = int(properties["reset"])
16 self._firstTime = True
17 self._lastValue = None
18

19 def update(self):
20 # Read the inputs
21 resetVal = self.read("rst")
22 ena = self.read("ena")
23

24 if resetVal == self._resetPos:
25

26 # As this component updates with clock, this line prevents
→˓that the component writes the same value and reduce the processor usage.

27 if self._lastValue != 0:
28

29 # Writes 0 to output
30 self.write("outQ", 0)
31 self._lastValue = 0
32

(continues on next page)

18 Chapter 5. Add and edit components

Sintel, Release 0.1

(continued from previous page)

33 elif ena == 1:
34 value = self.read("inD")
35

36 # As this component updates with clock, this line prevents
→˓that the component writes the same value and reduce the processor usage.

37 if self._lastValue != value:
38

39 # Writes the input value to output
40 self.write("outQ", value)
41 self._lastValue = value

The methods that you can use in the python code are:

a = self.read(“pInput”, base = 10) Reads the input value, this value is in 10 base by default, if you want
read in another base, just pass the “base” parameter with the base that you want, if this is base=2,
the returned value is a list with strings of “1” or “0”, for example [“0”, “0”, “1”, “0”] (this is the
number 2).

self.write(“pOutput”, value, base = 10) Writes a value in the signal connected to this output, base 10 is
by default, if you want to write a value in another base, pass the “base” parameter, for base 2, you
have to write a list with strings like [“1”, “0”, “1”, “0”] (this is the number 10)

VHDL code

If the component has clock, you have to add two different codes, one for falling edge and another for rising edge,
Sintel assign the property of select the clock flank for work, and you must have this present in the vhdl code.

The inputs and generics will be created by default, and you must add the architecture code.

There are two examples for two components in VHDL, an OR gate and a register.

1 --- OR gate example for sintel
2

3 library ieee;
4 use ieee.numeric_std.all;
5 use ieee.std_logic_1164.all;
6

7 entity OR01 is
8 generic(
9 Bus_LEN:natural := 1

10);
11 port(
12 pIn1: in std_logic_vector(Bus_LEN - 1 downto 0);
13 pIn2: in std_logic_vector(Bus_LEN - 1 downto 0);
14 pOut: out std_logic_vector(Bus_LEN - 1 downto 0)
15);
16 end entity;
17 architecture rtl of OR01 is
18 begin
19 -- Put the code here
20 pOut <= pIn1 or pIn2;
21 end architecture;

1 --- Register example for sintel
2

3 library ieee;
(continues on next page)

5.2. Adding components from scratch 19

Sintel, Release 0.1

(continued from previous page)

4 use ieee.numeric_std.all;
5 use ieee.std_logic_1164.all;
6

7 entity Register2 is
8 generics(
9 buses_LEN:natural := 1;

10 reset_PAR:std_logic := '0'
11);
12 port(
13 inD: in std_logic_vector(buses_LEN - 1 downto 0);
14 ena: in std_logic;
15 rst: in std_logic;
16 clk: in std_logic;
17 outQ: out std_logic_vector(buses_LEN - 1 downto 0)
18);
19 end entity;
20

21 --- This code is executed if the component is configured with the rising edge flank
22 architecture rising_edge_arch of Register2 is
23 begin
24 outQ <= (others => '0') when rst = reset_PAR else inD when falling_Edge(clk)

→˓and ena='1';
25 end architecture;
26

27 --- This code is executed if the component is configured with the falling edge flank
28 architecture falling_edge_arch of Register2 is
29 begin
30 outQ <= (others => '0') when rst = reset_PAR else inD when rising_Edge(clk)

→˓and ena='1';
31 end architecture;

As you can see in the register example, there is two architectures that are executed separated depending the component
configuration made by user.

Verilog

The verilog code addition is equal to vhdl edition, please read the prev item for understand all steps, next, there are
two examples of an OR gate and a Register in verilog.

20 Chapter 5. Add and edit components

CHAPTER 6

About the project

Copyright (c) 2019 Wilfer Daniel Ciro Maya <wilcirom@gmail.com>, Director Luis Miguel Capacho <lmcapa-
cho@uniquindio.edu.co>. Degree work for Universidad del Quindío, Colombia.

Sintel is a simulator and modeler of basic digital systems that allows, in addition to visualizing inputs and outputs in
real time, to export the circuit to a hardware description language such as VHDL and verilog.

Sintel is written in python with the QT graphics library, it is an open source project with GPLv3 license or later.

21

mailto:wilcirom@gmail.com
mailto:lmcapacho@uniquindio.edu.co
mailto:lmcapacho@uniquindio.edu.co

	Installation
	Dependency Icarus Verilog
	Binary
	For developers
	Execution

	Visual Interface
	Home view
	Simulation view
	Settings view
	Add component view
	Add state machine view

	Export the model to HDL
	(Optional) Install free simulation tools (Linux)
	(Optional) simulate the vhdl model in gtkwave with ghdl
	(Optional) simulate the verilog model in gtkwave with iverilog

	State machine (sm)
	basic data
	Add I/O
	Workspace
	Edit state machine

	Add and edit components
	Joining components
	Adding components from scratch

	About the project

